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Abstract: Based on a computational procedure for determining the functional derivative with1

respect to the density of any antisymmetric N-particle wave function for a non-interacting system2

that leads to the density, we devise a test as to whether or not a wave function known to lead to a3

given density corresponds to a solution of a Schrödinger equation for some potential. We examine4

explicitly the case of non-interacting systems describe by Slater determinants. Numerical examples5

for the cases of a one-dimensional square-well potential with infinite walls and the harmonic6

oscillator potential illustrate the formalism.7

Keywords: density functional theory; v-representability; constrained search8

1. Introduction9

The Hohenberg-Kohn theorems [1] form the foundation of density functional theory (DFT),10

on which most ab-initio electronic structure methods currently are based. The first theorem proves11

that the ground state of an many-electron system, described by an external potential, is uniquely12

determined by the ground state density (within an arbitrary constant). Therefore, the ground state13

density is the independent variable of DFT. In practice, it is still challenging to find the many-body14

wave function for the ground state of a potential. That task has been simplified by Kohn and15

Sham [2] who introduced a non-interacting system (Kohn-Sham system) with the same density as16

the interacting system that minimized the kinetic energy only. The existence of such a system is only17

assumed, but essential to the Kohn-Sham formulation of DFT.18

In most of today’s application of DFT only one direction of the Hohenberg-Kohn theorems is19

used, to find the ground state density for a given system described by an external potential. For20

the other direction, the inverse problem, it is a-priori not clear if even a potential exists that leads21

to a given density through the solution of the Schrödinger equation, whether for the interacting22

or non-interacting system, the problem of v-representability. We refer to the literature [3–11] for23

discussions on the issue of v-representability. Specific examples of v-representable densities as well24

as non-v-representable densities have being identified.25

An alternative formulation of the problem can be developed based on the N-representability26

property [3–6] of any density normalized to an integral number of particles, namely that a density27

can always be obtained from a wave function for a state of N-particles that, for fermions, is28

antisymmetric with respect to interchange of individual particle coordinates (and spins for electrons).29

The v-representability problem can be stated as follows: Given a density corresponding to a30

minimizing wave function, as obtained through the constrained search [3], determine whether or not31

the wave function is derived as the solution of the Schrödinger equation for a system of N electrons,32

either interacting, or non-interacting. A more general question is concerned with whether or not a33
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wave function that leads to a given density is either interacting or non-interacting v-representable.34

A formal procedure that addresses this problem for general interacting systems has been published35

elsewhere [12]. In the following, a density defined with the following properties: it is everywhere36

non-negative, is normalized to the number of particles, and leads to a finite value of the kinetic energy.37

In this work we focus on the v-representability for non-interacting systems, even though all38

procedures presented here can be applied for the interacting system in the same way [12]. In previous39

work [13–15], we have derived closed expressions for the functional derivative of terms that only40

depend indirectly on the density, with respect to it. Using that formalism, we now show analytically41

that differentiating the non-interacting kinetic energy for a v-representable wave function leads to the42

negative potential (Kohn-Sham potential), up to a constant. This does not hold for arbitrary wave43

functions leading to the density. We obtain different wave functions leading to the same density44

by using a procedure by Cioslowski [16,17], who also showed that each of these wave functions is45

differentiable with respect to the density. This provides a test establishing whether a given wave46

function (non-interacting), leading to a density, is non-interacting v-representable. We illustrate these47

procedures on the one-dimensional particle in a box problem as well as the harmonic oscillator.48

2. Results49

2.1. Background50

The Hamiltonian describing an interacting system of N electrons in an external potential takes
the usual form,

ĤN = V̂ + T̂N + ÛN , (1)

with the operators V̂, T̂N and ÛN corresponding, respectively, to the external field, the kinetic energy
and the inter-particle interaction (Coulomb repulsion for electrons). The ground-state energy of the
system is given by the expectation value,

Eg =
〈

ΨN
g

∣∣∣ĤN
∣∣∣ΨN

g

〉
,
〈

ΨN
g

∣∣∣ΨN
g

〉
= 1, (2)

where
∣∣∣ΨN

g

〉
denotes the many-particle ground state of ĤN . We use the notation,

∣∣ΨN〉 → n(r), and

say
∣∣ΨN〉 leads to the density n(r), to denote the property,

n(r) = N
∫ ∣∣∣ΨN(r, r2, . . . , rN)

∣∣∣2 dr2 . . . drN , (3)

where n(r) denotes the single-particle density function normalized to the total number of particles,
N. We now write Eq. (2) in the form,

Eg =
∫

v(r) ng(r)dr +
〈

ΨN
g

∣∣∣T̂ + Û
∣∣∣ΨN

g

〉
= Min︸︷︷︸

n(r)

[∫
v(r) n(r)dr + F[n]

]
= Min︸︷︷︸

n(r)

E[n], (4)

in terms of the constrained search functional [3,18],

F[n] = Min︸︷︷︸
|Ψ〉→n(r)

〈
Ψ
∣∣∣T̂N + ÛN

∣∣∣Ψ〉 . (5)

Given a density, n(r), the constrained search examines all antisymmetric N-particle wave functions51

that lead to the density and delivers the state (in the absence of degeneracy) that produces the52

minimum value of
〈
ΨN
∣∣T̂N + ÛN

∣∣ΨN〉.53
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As in the initial formulation of DFT by Kohn and Sham [2], we postulate the existence of a
fictitious non-interacting N-particle system described by the Hamiltonian,

ĤN
s = V̂s + T̂N , (6)

under the action of an external potential, V̂s, whose ground-state density is identical to the density
of the interacting system described by ĤN . In analogy with Eq. (5), we define the constrained search
functional [3],

Ts[n] = Min︸︷︷︸
|ΦN〉→n(r)

〈
ΦN
∣∣∣T̂N

∣∣∣ΦN
〉
=
〈

ΦN
GS

∣∣∣TN
∣∣∣ΦN

GS

〉

=
∫

ΦN∗(r(N))

∣∣∣∣∣∑j

[
−1

2
∇2

rj

]∣∣∣∣∣ΦN(r(N)) dr(N) . (7)

implying a search over all Slater determinants leading to a given density and returning that54

determinant that minimizes the expectation value of the kinetic energy for a system of N particles.55

Now, assume that the density is non-interacting v-representable for some potential, vs(r), so that
from the second theorem of Hohenberg and Kohn [1] follows that,

δTs[n]
δn(r)

= −vs(r), (8)

defined within an arbitrary constant. The potential, vs(r), is such that the orbitals entering the
construction of ΦN(r(N)) arise through the solutions of a single-particle Schrödinger equation,[

−1
2
∇2

r + vs(r)
]

φj(r) = εjφj(r), (9)

with eigenenergies εj. Clearly, the orbitals minimize the expectation value of the kinetic energy and
as such form the Slater determinant identified by the constrained search in establishing Ts[n]. For the
case of Slater determinants, Eq. (7) reduces to the direct sum,

Ts[n] = ∑
j

∫
φ∗j (r)

[
−1

2
∇2

r

]
φj(r) dr. (10)

2.2. Functional Differentiation56

The process of performing the functional differentiation of expectation values with respect to57

the density, however, is not immediately evident: The dependence of a given wave function on the58

density is implicit, rather than explicitly displayed in terms of the density (or analytic functions of59

it). This difficulty is resolved through the use of the equidensity orbitals [19–21] that are written as60

explicit functionals of the density and, as shown in [21], form an orthonormal and complete basis61

in three-dimensional space. This property has been exploited in previous work [13–15] to allow the62

functional differentiation of the Coulomb energy associated with a Slater determinant with respect to63

the density in order to determine the Coulomb potential including the contribution of the exchange64

term. A complete discussion is given in [14]. Here, we apply that formalism to derivatives of the65

non-interacting kinetic energy with respect to the density.66

We can obtain the functional derivative of Ts[n] by differentiating the wave functions under the
integral signs in (7), and determine the potential-like quantity,

− vs(r) =
δTs[n]
δn(r)

=

〈
δΦN

δn(r)

∣∣∣∣∣∣∣∣T̂N
∣∣∣∣ΦN

〉
+

〈
ΦN
∣∣∣∣T̂N

∣∣∣∣∣∣∣∣ δΦN

δn(r)

〉
, (11)
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where the double bars prohibit the operators from acting on the quantity beyond them. The reason67

for this is that functional derivatives of wave functions with respect to the density are generally not68

elements of the Hilbert space. Because of this feature, the operators in the last two equations act on69

the wave functions, either to their left or their right. It is seen that the combination of the constrained70

search and functional differentiation allows in principle the determination of all Slater determinants71

associated with given density that may correspond to a potential.72

For the case of a Slater determinant, the last expression takes the form,

δTs[n]
δn(r)

= ∑
j

∫
δφ∗(r′)
δn(r)

[
− 1

2
∇2

r′

]
φj(r′)dr′ + ∑

j

∫
δφ(r′)
δn(r)

[
− 1

2
∇2

r′

]
φ∗j (r

′) dr′ = −vs(r), (12)

where the del operator acts on arguments to its right, and the last line gives the functional derivative73

as a function of the coordinates that may or may not correspond to a potential. In this expression, the74

quantity, Ts[n], denotes the expectation value of the non-interacting kinetic energy operator, T̂N , with75

respect to any wave function that leads to a density.76

In previous work [13–15], we derived a closed-form expression of the functional derivative of
an orbital f (r) with respect to the density, δ f (r)

δn(r′) , in terms of ordinary (spatial) derivatives. In the
one-dimensional case, excluding terms that would lead to a constant shift in the potential (constants
and expressions solely depending on x but not x′), the derivative reads

δ f (x)
δn(x′)

=
f (x)

2n(x)
δ(x− x′) +

Θ(x− x′)
n(x)

[
f ′(x)− f (x) n′(x)

2 n(x)

]
. (13)

Primes on functions denote spatial derivatives with respect to x and Θ is the Heaviside step function.77

Expressions for the three-dimensional case can be found in reference [14] and [15] for both the cases78

of cartesian and spherical coordinates, respectively.79

In Appendix A we derive an expression for the differentiation of the expression for the kinetic80

energy (one-dimensional for simplicity) using equations (12) and (13), see Equation (25). If all orbitals81

contributing to the kinetic energy originate from the same potential through the Schrödinger or82

Kohn-Sham equations, we show analytically that the differentiation leads to the negative potential83

(within an arbitrary constant). The three-dimensional case follows analogously.84

2.3. Illustration of the Formalism85

The calculations quoted here illustrate the formalism developed above for cases where the86

potential is given and the wave functions are known analytically. The goal is to reproduce the87

potential from the functional derivative of the kinetic energy with respect to the density.88

For simplicity, we discuss one-dimensional systems in the non-interacting case where the wave89

function can be represented as a Slater determinant. Analogous procedures will apply in higher90

dimensions and the interacting framework.91

For our first example we consider N non-interacting particles in a box of length L bounded
by potential walls of infinite height. The wave functions of the particles confined in the box are
determined through the single-particle Schrödinger equation,[

−1
2

d2

dx2 + v(x)
]

φn(x) = εn φn(x), (14)

and vanish at the edges of the box. The εn denote the eigenvalues. When v(x) = 0 (or a constant), the
normalized single-particle wave functions are given by the expressions,

φn(x) =

√
2
L

sin
(n π x

L

)
= An sin(kn x) 0 ≤ x ≤ L (15)
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with quantum numbers n = 1, 2, 3, . . . . The energies take the form,

εn =
h̄2

2m

(nπ

L

)2
=

h̄2

2m
k2

n, (16)

with the ground state density for a system of N Fermions given by n(x) = ∑N
n=1 |φn(x)|2. Figure 192

illustrates the six lowest in energy eigenstates (L = 1)(left panel) and their moduli squared93

(corresponding to single-particle densities) on the right.
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Figure 1. The six lowest in energy wave functions (left) and the corresponding single particle densities
(right) for the particle-in-a-box model (L = 1). For illustrative purposes, all curves are shifted by the
corresponding energies, see Eq. (16), in atomic units h̄ = m = 1.

94

The second example discussed here is the one-dimensional harmonic oscillator. The potential is
given by

V(x) =
1
2

kx2 =
1
2

mωx2 ω =

√
k
m

. (17)

We make the usual transformation y =
√

αx and α = mω
h̄ . The normalized solutions of the

Schrödinger equation with the potential (17) read as

Ψn(y) =
( α

π

) 1
4 1√

2n n!
Hn(y) e−

y2
2 , (18)

where the Hn(y) are Hermite polynomials, which are solutions of the differential equations H′′n (y)−
2yH′n(y) + 2ny = 0, and n are integer quantum numbers ≥ 0. The corresponding energies are given
by

En =

(
n +

1
2

)
h̄ω, n = 0, 1, 2, . . . (19)

In the following discussion, we set m = ω = h̄ = 1, which corresponds to α = 1 and V(x) = 1
2 x2.95

The six lowest in energy single particle wave functions and their corresponding moduli squared are96

shown in Figure 2.97
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Figure 2. The six lowest in energy wave functions (left) and the corresponding single particle densities
(right) for the Harmonic oscillator. All curves are shifted by the corresponding energies, see Eq. (19).
The quadratic potential is shown in black.

For both examples, we use Eq. (25) to compute the potential. Since the wave functions are given
analytically, the potentials can be calculated analytically. We use Mathematica R©[22] to accomplish
that task. We tested cases up to N = 6, and obtained every time the corresponding potential up to a
constant. That’s not surprising because we have shown in Appendix A that the formalism to calculate
those functional derivatives leads to the potential. Equation (30) also obtains a constant that doesn’t
have a physical meaning. Applying l’Hopital’s rule twice at the right boundary for the particles in a
box example we obtain the constant:

c = ∑N
n=1 εnn2

∑N
n=1 n2

=
π2

2L2
h̄2

m
∑N

n=1 n4

∑N
n=1 n2

. (20)

Due to the exponential decay of the wave function and the density in the harmonic oscillator example,98

only the highest in energy of the occupied orbitals contributes to the constant. We find the constant99

to be equal to the eigenvalue of the highest occupied orbital.100

So far those tests have been performed occupying the lowest N orbitals. We find that any other101

combination, mimicking a non-ground state, e.g. by occupying orbitals 1, 2, 3, 4, 5 and 7, also leads102

to the same potential. The constants for the particles in the box example contains then the sum over103

occupied orbitals instead a sum from 1 to N, for the harmonic oscillator the constant is still determined104

by the highest occupied orbital.105

The finding that the formalism yields the potential from the kinetic energy, is not obvious106

because the condition δTs [n]
δn(r) = −vs(r) implies the condition of the ground state. On the other hand,107

those states correspond to a local extremum so that the expression still holds.108

Obtaining the potential by a functional differentiation for these examples may sound trivial,109

but it demonstrates the power of the procedure and the ability to calculate the functional derivative110

analytically. On the other hand, the procedure can be applied to cases where the the single particle111

orbitals are given numerically.112

So far, we have shown the formalism determines the potential exact (up to a constant) from
wave functions by functional differentiation of the kinetic energy, where it is known that all orbitals
originate from the same potential, the condition for v-representability. The next step is to determine
if a given set of orbitals, forming the density, is v-representable. That can be accomplished by
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calculating the potential vs(r) as shown above, and then checking if each of the orbitals fulfills the
Kohn-Sham equation by comparing the right and left-hand sides of the expression,

− 1
2
∇2

r φj(r) + vs(r)φj(r) = αjφj((r)). (21)

The determinant is v-representable when the equality holds, (for some αj), for all orbitals forming the113

determinant. It is convinient for the comparison to normalize the left and right-hand side separately114

in order to be independent of the αj.115

Now we apply this procedure to the case when the density is given. Generally, the task would be116

to find the wave function that minimizes the kinetic energy through the procedure of the constrained117

search [3]. Cioslowski [16,17] has established the formal procedure for generating the complete set of118

antisymmetric wave functions that lead to a given density. For a Slater determinant, the procedure is119

outlined in Appendix B. Based on his procedure, for each density, we construct a number of different120

Slater determinants that leads to it. For each Slater determinant, we differentiate the expectation value121

of kinetic energy with respect to the the density, obtaining vs(r). Finally, we apply Eq. (21) for every122

orbital of the determinant. The results of the test for the case of the particle in the box and harmonic123

oscillator are shown in Figures 3 and 4, respectively, for a three particle system.124

In the figures, the top rows exhibits the density, the second show the set of three mutually125

orthonormal orbitals, leading to the density. The third row contains vs, obtained using Eq. (25), for126

each set of orbitals and the remaining rows compare each of the orbitals with the normalized output127

corresponding to Eq. (21), where in some the output is multiplied by −1.128

In both examples, the target density (top row) is obtained using the three lowest in energy129

orbitals (see Eqs. 15 and 18; L = 1) for panels A,B and C, the density in panel D is constructed by130

using orbitals 2, 3 and 4. We applied Cioslowski’s procedure [16] for a single Slater determinant131

using auxiliary functions φ given in Tables 1 and 2 to obtain new Slater determinants leading to the132

given density. Those new orbitals are shown in second row. If the exact orbitals are used, Cioslowski’s133

procedure returns the same orbitals (column A), otherwise different orbitals are obtained. We note,134

the auxiliary functions φ do not need to be orthogonal or normalized, as long as they are linearly135

independent. The new orbitals, although mutually orthonormal, can have quite strange forms, as136

seen in the second row. They do not even have to obey the symmetry of the problem, nor have a137

specific number of nodes.138

Table 1. initial test functions used in Cioslowski’s procedure [16] for the square well example
corresponding to Figure 3. The functions in the first row are the exact orbitals, see Eq. (15).

column test orbital 1 test orbital 2 test orbital 3

A
√

2 sin(πx)
√

2 sin(2πx)
√

2 sin(3πx)
B 1 cos(2πx) cos(4πx)
C 1 x x2

D 1
4 + x

(
1
2 + x

)2 ( 3
4 + x

)3
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Figure 3. Results for the square well example, as described in the text. The given density is shown
in the top row, where the new orbitals obtained though Cioslowski’s procedure [16] using initial
functions from Table 1. The potential, obtained using functional differentiation of the expression of
the kinetic energy, is plotted in the third row. The three rows at the bottom show the results of the test
(see Eq. (21)), where the dashed line corresponds to the left hand side of the equation, and the solid
line to the right had side, equal to the new orbital, both normalized. Some of dashed functions are
multiplied by −1 for better comparison, corresponding to a negative α in Eq. (21).
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Figure 4. Results analogous to those of Fig. 3, but for the harmonic oscillator example. New orbitals
were obained though Cioslowski’s procedure [16] using initial functions from Table 2. The dashed
line in subfigure D3 shows 1

2 x2 for comparison.
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Table 2. initial test functions used in Cioslowski’s procedure [16] for the harmonic oscillator example
corresponding to Figure 4. The functions in the first row are the exact orbitals, see Eq. (18).

column test orbital 1 test orbital 2 test orbital 3

A 1
4√π

e−
1
2 x2

√
2

4√π
e−

1
2 x2

x 1√
2 4√π

e−
1
2 x2 (

2x2 − 1
)

B 1 x x2

C 1 x
6

x2

18 − 1
D 1 cos

(
πx
6
)

cos
(

πx
3
)

Examining these cases, where different sets of orbitals form the same density (columns B139

and C), we see that the left and right hand side of Eq (21) are not the same (see bottom three140

rows), even though we know the density to be v-representable. This suggests that most of the141

sets generated by Cioslowski’s procedure [16] may not correspond to a potential, yet all lead to the142

same density by construction. This behavior is expected from the first theorem of Hohenberg and143

Kohn: If v-representable, the ground state density determines uniquely the potential and hence the144

corresponding ground state wave function.145

We also applied the procedure to a different density to mimic an exited state (panels D). As seen146

on panels D4, D5 and D6, the set of obtained wave functions fail to satisfy Eq (21) and hence are147

not v-representable. The choice of the exact orbitals passes the test of v-representability, as already148

pointed out above.149

In order to quantify the deviation of the left and right hand side of Eq. (21) the L2 norm of the150

difference is shown in tables 3 and 4. L2 norms smaller than the machine epsilon are marked as 0.151

Table 3. L2 norm of the difference of left and right hand side of Eq. (21) for the square well example,
corresponding to rows 4–6 in Figure 1.

A B C D

orbital 1 0 0.5134 0.2508 0.0148
orbital 2 0 0.7795 0.1833 0.1158
orbital 3 0 1.9006 0.1694 0.0428

Table 4. L2 norm of the difference of left and right hand side of Eq. (21) for the harmonic oscillator
example, corresponding to rows 4–6 in Figure 2.

A B C D

orbital 1 0 0.01390 0.23676 0.33567
orbital 2 0 0 0 0.34787
orbital 3 0 0.00057 0.43090 0.23184

3. Conclusions152

For a non-interacting system, we have shown how v-representability of a given wave function153

can be determined. This is accomplished by functional differentiation of the kinetic energy with154

respect to the density, and checking whether that derivative is a potential leading to the wave155

function. We have shown analytically (in one dimension), that in case of v-representability, the156

previously derived expressions for the functional derivative of orbitals lead to the correct result, the157

negative of the potential, when applied to terms depending on the diagonal part of the single-particle158

density matrix like the expression for the kinetic energy.159
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Appendix A. functional differentiation of the kinetic energy (non-interacting)167

The non-interacting kinetic energy and its derivative with respect to the density reads (in units
h̄ = m = 1)

Ts = ∑
i

∫
f ∗i (r)

[
−∇

2

2

]
fi(r)dr (22)

δTs

δn(r′)
= ∑

i

∫ f ∗i (r)
δn(r′)

[
−∇

2

2
fi(r)

]
dr + ∑

i

∫ fi(r)
δn(r′)

[
−∇

2

2
f ∗i (r)

]
dr, (23)

where fi are solutions of the Kohn-Sham equation, the sum runs over the lowest in energy states. The
last expression can be obtained through twice integrating by parts.
For simplicity, we continue in one dimension. The functional derivative of an orbital with respect to
the density reads then, using Eq. (13):

δTs

δn(x′)
=∑

i

∫ f ∗i (x)
2n(x)

[
−1

2
f ′′i (x)

]
δ(x− x′) dx + ∑

i

∫ fi(x)
2n(x)

[
−1

2
f ∗′′i (x)

]
δ(x− x′) dx

+ ∑
i

∫ ∞

x′

1
n(x)

[
f ′∗i (x)− f ∗i (x)

n′(x)
2n(x)

] [
−1

2
f ′′i (x)

]
dx

+ ∑
i

∫ ∞

x′

1
n(x)

[
f ′i (x)− fi(x)

n′(x)
2n(x)

] [
−1

2
f ∗′′i (x)

]
dx (24)

=∑
i

f ∗i (x′)
2n(x′)

[
−1

2
f ′′i (x′)

]
+ ∑

i

fi(x′)
2n(x′)

[
−1

2
f ∗′′i (x′)

]
+ ∑

i

∫ ∞

x′

[
f ′∗i (x)
n(x)

[
−1

2
f ′′i (x)

]
+

f ′i (x)
n(x)

[
−1

2
f ∗′′i (x)

]]
dx

−∑
i

∫ ∞

x′

[
f ∗i (x)
n(x)

n′(x)
2n(x)

[
−1

2
f ′′i (x)

]
+

fi(x)
n(x)

n′(x)
2n(x)

[
−1

2
f ∗′′i (x)

]]
dx. (25)

If the fi correspond to the same potential V and are solutions of a Schrödinger (or Kohn-Sham)
equation: [

−1
2

f ′′i (x)
]
= [εi −V(x)] fi(x) (26)



12 of 13

then the expression simplifies to:

δTs

δn(x′)
=∑

i
εi

f ∗i (x′) fi(x′) + fi(x′) f ∗i (x′)
2n(x′)

−
[
∑

i

f ∗i (x′) fi(x′)
2n(x′)

+ ∑
i

fi(x′) f ∗i (x′)
2n(x′)

]
︸ ︷︷ ︸

=1

V(x′)

+
∫ ∞

x′

[
∑i εi

(
f ′∗i (x) fi(x) + f ′i (x) f ∗i (x)

)
n(x)

]
dx

−
∫ ∞

x′

[
∑i
(

f ′∗i (x) fi(x) + f ′i (x) f ∗i (x)
)

n(x)
V(x)

]
︸ ︷︷ ︸

= n′(x)
n(x) V(x)

dx

−
∫ ∞

x′

n′(x)
2n(x)n(x) ∑

i
εi [ f ∗i (x) fi(x) + fi(x) f ∗i (x)] dx

+
∫ ∞

x′

n′(x)
2n(x)n(x)

V(x)∑
i
[ f ∗i (x) fi(x) + fi(x) f ∗i (x)]︸ ︷︷ ︸

= n′(x)
n(x) V(x)

dx (27)

δTs

δn(x′)
=−V(x′) +

∑i εi f ∗i (x′) fi(x′)
n(x′)

+
∫ ∞

x′

[
∑i εi f ∗i (x) fi(x)

n(x)

]′
dx (28)

=−V(x′) +
∑i εi f ∗i (x) fi(x)

n(x)

∣∣∣∣
x=∞︸ ︷︷ ︸

=const

(29)

δTs

δn(x′)
=−V(x′) + c (30)

For a finite systems the x = ∞ in Eq. (29) signifies the right boundary. To derive Eq. (29) integration168

by parts is used:
∫ b

a f ′[x] dx = f [x]|x=b − f [x]|x=a.169

Appendix B. Cioslowski’s procedure170

For a single Slater determinant, we briefly describe how orthogonal orbitals, ψ(x), can be
obtained, leading to a given density n(x) = ∑N

i=1 |ψi|2, using Cioslowski’s precedure [16]. From a
set linear independent auxiliary functions φ(x), the ψi(x) are given by the expression,

ψi(x) =
√

f (x)
N

∑
i=1

sijφj(x). (31)

The matrix s is given by
s = S−1/2 (32)

with
Sij =

∫
f (x) φi(x) φj(x)dx, (33)

and

f (x) = n(r)

[
∑
ij

φi(x)
(

S−1
)

ij
φj(x)

]−1

. (34)

The matrix S exists and has to be obtained self-consistently. That can be accomplished by iterating171

the equations above, e.g. using an identity matrix as starting point.172
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